Tag Archives: chrome machine

China best S45c Hard Chrome Plated Rod for Hydraulic and Pneumatic Cylinder CNC Machine vacuum pump ac system

Product Description

Main Products:

Hard Chrome Plated Rod, Hydraulic Piston Rod, Cylinder Piston Rod, Chromium Rods, Linear Shafts, SBR Shafts, Hard Chrome Shaft, Induction Rod, Induction Shaft, etc.

the range of Diameters include: 3-120mm
 

 Item  OD mm                                                                
Hard Chrome Rod   3 10  12  13  14  15  16  17  18  20  22  25  28  30  32  35  40  45  50  55  60  65  70  75  80  85  90  100  110  120 
Induction Hard Chrome Rod  3 10  12  13  14  15  16  18  20  22  25  28  30  32  35  40  45  50  55  60  65  70  75  80  85  90  100  110  120 

The hard chromium piston rods produced by our company come with more than JIS S45C material, where the rods first undergo precision milling and processing, and are then put through gard surface chromium treatment, allowing a surface precision level of f7, and a surface hardness reaching HV800 minimum and up, which not only help to improve wear resistance but also help to extend the life cycle of the rods, thus helping the customer save cost.

The corrosion resistances is tested in our own internal salt spray laboratory, and The rods surface heat treatment and hardness CHINAMFG HRC55°±2°, and at a hardened depth of between 0.5mm – 3mm, before the rods are put through precision milling and hard chromium treatment for a membrane thickness measuring 20 CHINAMFG ± 10% to drastically improve the rod’s wear resistance, and help to extend the life cycle of the rods.

1. Chrome Plated Steel Bars:

Our Chrome Plated Bars are produced from medium carbon cold-finished or hot rolled steel bars usually in 1045 grades. The bars are centerless ground, polished, and chrome plated to a minimum thickness of 0.0005″, and 0.001″ per side. 
Chrome Plated bars are specifically designed to be used for most piston rod applications in hydraulic and pneumatic cylinders.

2.  Induction Hardened Chrome Plated Bars:

Our  Induction Hardened Chrome Plated Bars are produced by using advanced processing techniques usually on JIS S45C, SAE1045 or DIN CK45 steel rods, for surface removal, polishing, induction hardening, followed by hard chrome plating to a thickness minimum of 0.0005″ or 0.001″ per side. The finished product results in a superior impact resistant bar ideal for high quality piston rods capable of handling tough environments.

Applications:

Linear Motion Xihu (West Lake) Dis.s, Hydraulic cylinder rods
plastic injection molding machines, construction equipment, rubber molding machines, papermaking machines, printing machines, refrigeration equipment, foods and chemical machinery, loading equipment, fiber spinning equipment, textile machinery, agricultural equipment, automotives, shipbuilding and the like.

3. Cold Drawn Seamless Mechanical Tubing (CDS)

is a cold drawn 1571 steel tube. Produced from piercing hot rolled bar stock, the cold drawing process increases the tube’s physical properties reducing the cost of machine time. Cold drawn seamless tubing provides a better uniformed OD and ID, enhanced machinability, increased strength, and tighter tolerances compared to hot finish seamless products

Applications:

Hydraulic cylinders
Truck and Automotive parts
Heavy equipment
Agricultural components
Auto and Truck Axles, Suspension parts and shock absorbers
High Speed Shafts and rollers
Bearings and Spacers, Roll cages, and many other machined tubular parts.

If you are interested in our company, please feel free to contact us:

HangZhou CHINAMFG PRECISION MACHINERY CO., LTD
ADD: No.217 CHINAMFG Building, No.668 Fengting Street, HangZhou Industrial Park P.R.C
 
 
 http://chromedbars
http://chromedbars
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Length: 1000-6000mm
Raw Material: Ck45/S45c/1045/1.1191
Straightness: 0.15 /1000mm
Precision: F7/G6
Roughness: Ra 0.2μm~0.4μm
Surface Hardness: HRC58-60
Samples:
US$ 0.1/Meter
1 Meter(Min.Order)

|

Customization:
Available

|

China best S45c Hard Chrome Plated Rod for Hydraulic and Pneumatic Cylinder CNC Machine   vacuum pump ac system	China best S45c Hard Chrome Plated Rod for Hydraulic and Pneumatic Cylinder CNC Machine   vacuum pump ac system
editor by CX 2024-03-06

China high quality Hard Chrome Machine Plated Bars Hydraulic Cylinder Round Piston Rod a/c vacuum pump

Product Description

Product Description

Introduction:

Linear shafts are steel rods made of C1045 Induction Hardened and Hard Chrome plated.The rods undergo rigorous processes like pilling, straightening, hardening, grinding, polishing, hard chrome plating and finishing under the supervision of experienced engineers. Different from the Hard Chrome Plated Piston Rods, the surface hardness of the Induction Hardened Chrome Rods is high up to HRC58-62 via high-frequency induction harden technique. Linear shafts are usually used as guide rail or slide rail matching with Linearing Bearings because of the surface high durability, abrasion resistance, longer working life and dimensional accuracy.

 

WHAT CAN WE SUPPLY :
1,We can offer full rangs of linear shafts with diameter 3mm- 120mm, maximum length up to 8000mm.

2,We can provide customized material including GCr15/SUJ2, 42CrMo/4140.

3,When you have special requirements on machining or lathing, such as threading, drilled and tapped, milling keys etc. We can lathe for you. We have high precision several milling machines, drilling machines and 14 CNC lathing centers. Our advanced equipment, skilled technical workers,scientific testing instrument and strict quality control, all of these factors to ensure the precision of our products. Our service center is at your disposal for machining of shafts according to your request or your drawings. You will be satisfied with our service.

Detailed specifications of linear shafts as follows:

Linear Shaft 

Structure

Induction Hardened Chrome Plated Rod

Material

CK45/S45C/C1045/1.1191           GCR15/SUJ2         42CrMo/4140

Shaft Diameter

3-120mm

Surface hardness

HRC58-60

Surface hardening depth

0.8-3mm

Chrome layer thickness

15μm ~ 25μm(According to your request)

Chrome layer hardness

Above HV850

Axis straightness

0.15mm /1000mm

Roughness

Ra 0.2μm~0.4μm

Precision

 g6/f7

  • If you have any questions, please feel free contact our customer service!

Material: Steel
Usage: Automation and Control
Structure: Piston Cylinder
Samples:
US$ 0.5/Meter
1 Meter(Min.Order)

|

Order Sample

linear shaft
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

hydraulic cylinder

Can hydraulic cylinders be integrated with advanced control systems and automation?

Yes, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and overall performance. The integration of hydraulic cylinders with advanced control systems allows for more sophisticated and precise control over their operation, enabling automation and intelligent control. Here’s a detailed explanation of how hydraulic cylinders can be integrated with advanced control systems and automation:

1. Electronic Control:

– Hydraulic cylinders can be equipped with electronic sensors and transducers to provide real-time feedback on their position, force, pressure, or velocity. These sensors can be integrated with advanced control systems, such as programmable logic controllers (PLCs) or distributed control systems (DCS), to monitor and control the operation of hydraulic cylinders. By integrating electronic control, the position, speed, and force of hydraulic cylinders can be precisely monitored and adjusted, allowing for more accurate and automated control.

2. Closed-Loop Control:

– Closed-loop control systems use feedback from sensors to continuously monitor and adjust the operation of hydraulic cylinders. By integrating hydraulic cylinders with closed-loop control systems, precise control over position, velocity, and force can be achieved. Closed-loop control enables the system to automatically compensate for variations, external disturbances, or changes in operating conditions, ensuring accurate and consistent performance. This integration is particularly beneficial in applications that require precise positioning, synchronization, or force control.

3. Proportional and Servo Control:

– Hydraulic cylinders can be integrated with proportional and servo control systems to achieve finer control over their operation. Proportional control systems use proportional valves to regulate the flow and pressure of hydraulic fluid, allowing for precise adjustment of cylinder speed and force. Servo control systems, on the other hand, combine feedback sensors, high-performance valves, and advanced control algorithms to achieve extremely precise control over hydraulic cylinders. Proportional and servo control integration enhances the responsiveness, accuracy, and dynamic performance of hydraulic cylinders.

4. Human-Machine Interface (HMI):

– Hydraulic cylinders integrated with advanced control systems can be operated and monitored through human-machine interface (HMI) devices. HMIs provide a graphical user interface that allows operators to interact with the control system, monitor cylinder performance, and adjust parameters. HMIs enable operators to set desired positions, forces, or velocities, and visualize the real-time feedback from sensors. This integration simplifies the operation and monitoring of hydraulic cylinders, making them more user-friendly and facilitating seamless integration into automated systems.

5. Communication and Networking:

– Hydraulic cylinders can be integrated into communication and networking systems, enabling them to be part of a larger automated system. Integration with industrial communication protocols, such as Ethernet/IP, Profibus, or Modbus, allows for seamless information exchange between the hydraulic cylinders and other system components. This integration enables centralized control, data logging, remote monitoring, and coordination with other automated processes. Communication and networking integration enhance the overall efficiency, coordination, and integration of hydraulic cylinders within complex automation systems.

6. Automation and Sequential Control:

– By integrating hydraulic cylinders with advanced control systems, they can be seamlessly incorporated into automated processes and sequential control operations. The control system can execute predefined sequences or programmed logic to control the operation of hydraulic cylinders based on specific conditions, inputs, or timing. This integration enables the automation of complex tasks, such as material handling, assembly operations, or repetitive motions. Hydraulic cylinders can be synchronized with other actuators, sensors, or devices, allowing for coordinated and automated operation in various industrial applications.

7. Predictive Maintenance and Condition Monitoring:

– Advanced control systems can also enable predictive maintenance and condition monitoring for hydraulic cylinders. By integrating sensors and monitoring capabilities, the control system can continuously monitor the performance, health, and condition of hydraulic cylinders. This integration allows for the detection of abnormalities, wear, or potential failures in real-time. Predictive maintenance strategies can be implemented based on the collected data, optimizing maintenance schedules, reducing downtime, and enhancing the overall reliability of hydraulic systems.

In summary, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and performance. The integration allows for electronic control, closed-loop control, proportional and servo control, human-machine interface (HMI) interaction, communication and networking, automation and sequential control, as well as predictive maintenance and condition monitoring. These integrations enable more precise control, automation, improved efficiency, and optimized performance of hydraulic cylinders in various industrial applications.

hydraulic cylinder

Ensuring Controlled and Safe Force Application in Heavy Machinery with Hydraulic Cylinders

Hydraulic cylinders play a critical role in heavy machinery by ensuring controlled and safe force application. The ability to exert and control high forces is essential for heavy machinery operations, such as lifting, pressing, pushing, or pulling heavy loads. Let’s explore how hydraulic cylinders ensure controlled and safe force application in heavy machinery:

  1. Force Control: Hydraulic cylinders provide precise force control capabilities. The hydraulic system’s pressure can be adjusted to regulate the force exerted by the cylinder. This control allows operators to apply the necessary force for a specific task while ensuring it remains within safe limits. By accurately controlling the force, hydraulic cylinders help prevent excessive force that could damage the machinery or compromise the safety of the operation.
  2. Load Balancing: In heavy machinery, multiple hydraulic cylinders are often used in conjunction to distribute and balance the applied force. By using multiple cylinders, the load can be evenly distributed across the machinery, minimizing stress concentrations and ensuring controlled force application. This load balancing approach enhances the stability and safety of the machinery, preventing uneven loading that could lead to structural issues or instability.
  3. Safety Valves: Hydraulic systems in heavy machinery are equipped with safety valves to protect against excessive force or overloading. Safety valves are designed to release hydraulic fluid from the cylinder when the force exceeds a predetermined threshold. This prevents the force from reaching dangerous levels, safeguarding the machinery and preventing potential accidents or damage. Safety valves provide an additional layer of safety and ensure controlled force application even in unexpected circumstances.
  4. Pressure Relief Systems: Hydraulic cylinders incorporate pressure relief systems to further enhance safety. These systems are designed to relieve excess pressure in the hydraulic system, which could occur due to factors such as thermal expansion or system malfunctions. By relieving excess pressure, the pressure relief systems prevent sudden and uncontrolled force surges, maintaining safe and controlled force application in heavy machinery.
  5. Structural Integrity: Hydraulic cylinders are designed to withstand the high forces and loads associated with heavy machinery applications. The cylinders are constructed using robust materials, such as high-strength steel, and undergo rigorous testing to ensure their structural integrity. This ensures that the cylinders can safely handle the forces applied during heavy machinery operations without experiencing failures or deformations that could compromise the safety and controlled force application.

In summary, hydraulic cylinders ensure controlled and safe force application in heavy machinery through force control, load balancing, safety valves, pressure relief systems, and robust structural design. These features and design considerations enable operators to exert the necessary force while maintaining safety and preventing excessive loads or force surges. By incorporating hydraulic cylinders into heavy machinery, manufacturers can achieve controlled force application, enhance operational safety, and protect the machinery from damage or failure.

hydraulic cylinder

How do hydraulic cylinders ensure precise and controlled movement in equipment?

Hydraulic cylinders are widely used in various equipment and machinery to provide precise and controlled movement. They utilize hydraulic fluid and mechanical components to achieve accurate positioning, smooth operation, and reliable control. Here’s a detailed explanation of how hydraulic cylinders ensure precise and controlled movement in equipment:

1. Hydraulic Principle:

– Hydraulic cylinders operate based on Pascal’s law, which states that pressure exerted on a fluid is transmitted equally in all directions. The hydraulic fluid is contained within the cylinder, and when pressure is applied, it acts on the piston, generating force. By controlling the pressure and flow of hydraulic fluid, the movement of the cylinder can be precisely regulated, allowing for accurate and controlled motion.

2. Force and Load Management:

– Hydraulic cylinders are designed to handle specific loads and forces. The force generated by the hydraulic cylinder depends on the hydraulic pressure and the surface area of the piston. By adjusting the pressure, the force output can be controlled. This allows for precise management of the load and ensures that the cylinder can handle the required force without exerting excessive or insufficient force. Proper load management contributes to the precise and controlled movement of the equipment.

3. Control Valves:

– Control valves play a crucial role in regulating the flow and direction of hydraulic fluid within the cylinder. These valves allow operators to control the extension and retraction of the cylinder, adjust the speed of movement, and stop or hold the cylinder at any desired position. By manipulating the control valves, precise and controlled movement can be achieved, enabling operators to position equipment accurately and perform specific tasks with precision.

4. Flow Control:

– Hydraulic cylinders incorporate flow control valves to manage the rate of hydraulic fluid flow. These valves control the speed of the cylinder’s extension and retraction, allowing for smooth and controlled movement. By adjusting the flow rate, operators can precisely control the speed of the cylinder, ensuring that it moves at the desired rate without sudden or erratic movements. Flow control contributes to the overall precision and control of the equipment’s movement.

5. Position Sensing:

– To ensure precise movement, hydraulic cylinders can be equipped with position sensing devices such as linear transducers or proximity sensors. These sensors provide feedback on the position of the cylinder, allowing for accurate position control and closed-loop control systems. By continuously monitoring the position, the equipment’s movement can be controlled with high accuracy, enabling precise positioning and operation.

6. Proportional Control:

– Advanced hydraulic systems utilize proportional control technology, which allows for precise and fine-tuned control of the hydraulic cylinder’s movement. Proportional valves, often operated by electronic control systems, provide variable flow rates and pressure adjustments. This technology enables precise control of speed, force, and position, resulting in highly accurate and controlled movement of the equipment.

7. Cushioning and Damping:

– Hydraulic cylinders can incorporate cushioning and damping mechanisms to ensure smooth and controlled movement at the end of the stroke. Cushioning features, such as adjustable cushions or shock absorbers, reduce the impact and decelerate the cylinder before reaching the end of the stroke. This prevents abrupt stops and minimizes vibrations, contributing to precise and controlled movement.

8. Load Compensation:

– Some hydraulic systems utilize load compensation mechanisms to maintain precise movement even when the load varies. Load-sensing systems monitor the load demand and adjust the hydraulic pressure and flow accordingly to meet that demand. This compensation ensures that the equipment’s movement remains accurate and controlled, regardless of changes in the applied load.

In summary, hydraulic cylinders ensure precise and controlled movement in equipment through the application of hydraulic principles, force and load management, control valves, flow control, position sensing, proportional control, cushioning and damping mechanisms, and load compensation. These features and technologies allow operators to achieve accurate positioning, smooth operation, and reliable control, enabling equipment to perform tasks with precision and efficiency. The combination of hydraulic power and careful design considerations ensures that hydraulic cylinders deliver precise and controlled movement in a wide range of industrial applications.

China high quality Hard Chrome Machine Plated Bars Hydraulic Cylinder Round Piston Rod   a/c vacuum pump		China high quality Hard Chrome Machine Plated Bars Hydraulic Cylinder Round Piston Rod   a/c vacuum pump
editor by CX 2023-11-11